Intro to Inferential Statistics with R

Workshop 5

Course: VSK1004 Applied Researcher

Intro to Inferential statistics with R

c.utrillaguerrero@maastrichtuniversity.nl

Workshop structure (draft)

MONDAY	WEDNESDAY	TODAY
Intro to Statistic Inference	More about inferential stats	Linear & Logistic Regression
 Descriptive vs Inferential statistics Population, sample and sampling distribution Null Hypothesis testing Correlation and interpretation 	 Choosing a statistical test t-test family chi-squared correlation Chi-squared distribution 	 Linear Regression Multiple Linear Regression Model Assumption Logistic Regression

Our goal in the next 40 min

In this session, we will cover some of the basic statistical models and its properties such as:

- 1. Simple Linear Regression
- 2. Multiple Linear Regression
- 3. Linear Model Assumptions
- 4. Logistic Regression

Simple Linear Regression

Intro to Inferential statistics with R

c.utrillaguerrero@maastrichtuniversity.nl

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

Simple Linear Regression

$y = b_0 + b_1 * x_1$ Dependent variable (DV)

Look at the simple Linear regression

Simple Linear Regression:

Representation in a graph: x and y axis

Simple Linear Regression:

Salary (Euro)

Simple Linear Regression:

Simple Linear Regression:

Simple Linear Regression:

Salary (Euro)

Simple Linear Regression:

Salary (Euro)

Experience

Intro to Inferential statistics with R

how salary is distributed among people

Simple Linear Regression:

Salary (Euro)

Experience

Intro to Inferential statistics with R

Simple Linear Regression:

Salary (Euro)

$$\mathbf{y} = \mathbf{b}_0 + \mathbf{b}_1 * \mathbf{x}_1$$

Repesentation in a graph with the equation

Simple Linear Regression:

Salary (Euro)

Add best fitting line for linear regression

Simple Linear Regression:

Salary (Euro) $y = b_0 + b_1 * x_1$ Salary = $b_0 + b_1 *$ Experience

Identify parameters in the graphs: Constant

Simple Linear Regression:

Identify parameters in the graphs: Constant

Simple Linear Regression:

Identify parameters in the graphs: Slope

Simple Linear Regression:

Identify parameters in the graphs: Slope

Simple Linear Regression:

Intro to Inferential statistics with R

Identify parameters in the graphs: Slope

Simple Linear Regression:

Intro to Inferential statistics with R

All linear parameters in the best fitted line

Simple Linear Regression:

Simple Linear Regression:

Salary (Euro)

Experience

Intro to Inferential statistics with R

Experience

Intro to Inferential statistics with R

<u>Linear Regression</u> looks for <u>min</u> sum of squares to find the line which has the smallest sum squares possible, and its called, the <u>best fitting line</u>

Multiple Linear Regression

Intro to Inferential statistics with R

c.utrillaguerrero@maastrichtuniversity.nl

Same thing but many variables into the model

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + ... + b_n * X_n$$

Same thing but many variables into the model

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

Dependent variable (DV)

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + ... + b_n * X_n$$

Same thing but many variables into the model

Regressions

Model Assumptions

A Caveat: Assumptions of Linear Regression

Linearity
Homoscedasticity
Multivariate Normality
Independence of errors
Lack of multicollinearity

Intro to Inferential statistics with R

c.utrillaguerrero@maastrichtuniversity.nl

Linear Regression:

Linear Regression:

- Simple
- $y = b_0 + b_1 * x$

Linear Regression:

- Simple
- $y = b_0 + b_1 * x$

- Multiple: $y = b_0 + b_1 * x_1 + ... + b_n * X_n$

What is new: Logistic regression

This is new:

This is new:

This is new:

This is new:

We know this:

Salary (Euro)

Logistic Regression: what if predict the probability or likelihood a person taking the offer?

Logistic Regression: this part make sense to get probabilities

Logistic Regression: this part does not make sense to get probabilities (<0>1)

Intro to Inferential statistics with R

Logistic Regression: best fitting line that fits our data

Logistic Regression: we created the model

Logistic Regression: we predict this probability

Intro to Inferential statistics with R

c.utrillaguerrero@maastrichtuniversity.nl

Logistic Regression: what we need to do to get the probability of this 4 random variables?

Logistic Regression: we need to project them in the curve

Logistic Regression: if you need the probabilities, then it has to be projected to the left

Logistic Regression: who is the least/most likely to take the offer?

Intro to Inferential statistics with R

c.utrillaguerrero@maastrichtuniversity.nl

Logistic Regression: I want a prediction instead probabilities

Logistic Regression: get predicted (fitted) values

Logistic Regression: get predicted (fitted) values

Logistic Regression: get predicted (fitted) values

Logistic Regression: select a threshold line

Logistic Regression: if predicted probability is less than 50% then we predict 0

Logistic Regression: if predicted probability is less than 50% then we predict 0

Logistic Regression: anything above this threshold are predicted YES

Logistic Regression: anything above this threshold are predicted YES

Let's do it in R!!