Intro to Inferential Statistics with R

Workshop 4
Course: VSK1004 Applied Researcher
2

Workshop structure

1. Descriptive vs Inferential statistics
2. Population, sample and sampling distribution
3. Null Hypothesis testing
4. Correlation and
interpretation
5. Choosing a statistical test
6. Paired t-test
7. Anova
8. Chi-squared distribution
9. Model assumptions
10. Interpretations

Our goal in the next 40 min

In this session, we will cover some other statistical procedures for hypothesis testing (quantitative research):

1. Choosing a statistical test
2. Paired t-test
3. Chi-square test for independence
4. ANOVA

1. Choosing a Statistical test for your research

Many possibilities

- Estimate Population Proportion
- Estimate Population Mean
- One sample Proportion
- Two sample Proportions
- One sample t (Mean)
- Unpaired sample t
- Paired sample t
- Correlation test
- One-Way ANOVA
- Two-Way ANOVA
- Chi-Square Test
- One Sample Variance
- Two Sample Variance
- Wilcoxon rank-sum test

Most common test for quantitative research

- Estimate Population

Proportion

- Estimate Population

Mean

- One sample Proportion
- Two sample Proportions
- One sample t (Mean)
- Unpaired sample t
- Paired sample t
- Correlation test
- One-Way ANOVA
- Two-Way ANOVA
- Chi-Square Test

One Sample
Variance

- Two Sample

Variance

- Wilcoxon rank-
sum test

Monday

- Estimate Population Proportion
- Estimate Population Mean
- One sample Proportion
- Two sample Proportions
- One sample t (Mean)
- Unpaired sample t
- Paired sample t
- Correlation test
- One-Way ANOVA
- Two-Way ANOVA
- Chi-Square Test
- One Sample Variance
- Two Sample Variance
- Wilcoxon ranksum test

Today

- Estimate Population

Proportion

- Estimate Population

Mean

- One sample Proportion
- Two sample Proportions
- One sample t (Mean)
- Unpaired sample t
- Paired sample t
- Correlation test
- One-Way ANOVA
- Two-Way ANOVA
- Chi-Square Test
- One Sample Variance
- Two Sample Variance
- Wilcoxon ranksum test

What is your purpose for research question?

- Comparison:
- Is there a differences between groups?
- e.g. females vs. males
- e.g. control group vs. treatment groups
- e.g. grouping individuals by color preferences (yellow, blue)
- In this different examples, we have, at least, two groups and we attempt to find the differences

What is your purpose for research question?

- Comparison:
- Is there a differences between groups?
- e.g. females vs. males
- e.g. control group vs. treatment groups
- e.g. grouping individuals by color preferences (yellow, blue)
- In this different examples, we have, at least, two groups and we attempt to find the differences
- Relationship:
- Is there a connection?
- e.g. what is the equation relating height $\&$ flexibility
- e.g. can age predict muscle mass?
- e.g. is medication dosage linked to recovery time
- In this different examples, we are seeking out correlation or relationship from one variable to the other

Type of Data you are looking at:

- Categorical:
- Qualitative characteristics:
- Mortality Rate (death/survival)
- Patient Falls Rate (fall/not fall)
- Which gene was expressed?
- Continuous
- Quantitative or numerical:
- Heart Rate
- Age
- Blood pressure

3 families of statistical tests

- Chi-squared
. t-test
. correlation

Purpose

- Comparison:
- Any difference?
- Categorical:
- No quantitative meaning
- Relationship:
- Any connection?

Type of Data

- Continuous:
- Quantitative meaning

Purpose

- Comparison: Any difference?
- Relationship:
- Any connection?

Chi-Squared Family Type of Data

No quantitative meaning

- Continuous:
- Quantitative meaning

Purpose

- Comparison:

Any difference?

- Relationship:
- Any connection?

t- Test Family
 Type of Data

- Categorical:

No quantitative meaning

- Continuous:

Quantitative meaning

Purpose

- Comparison:
- Any difference?

3 families of statistical tests

- Chi-squared:
- Comparison
- Categorical only
- t -Test:
- comparison
- categorical and continuous
- Correlation
- Relationship
- continuous only

3 families of statistical tests

- Chi-squared:

Any number of
levels/groups:

- Chi-squared test of homogeneity
- Chi-squared test of independence
- t -Test:
- 1 level/group:
- one-sample ttest
- 2 levels/groups:
- two-sample unpaired t-test
- two-sample paired t-test
- 3+ levels/groups:
- one-way ANOVA
- Correlation:
- 1 independent and 1 dependent variable:
- Pearson's correlation
- Regression

3 families of statistical tests

- Chi-squared:

Any number of
levels/groups:

- Chi-squared test of homogeneity
- Chi-squared test of independence
- t -Test:
- 1 level/group:
- one-sample ttest
- 2 levels/groups:
- two-sample unpaired t-test
- two-sample paired t-test
- 3+ levels/groups:
- one-way ANOVA
- Correlation:
- 1 independent and 1 dependent variable:
- Pearson's correlation
- Regression

2. Paired (Dependent) sample t-test

Paired-samples t-test: Example

A study was designed to see if XYZ drug was effective at improving their IQ. 20 patients took IQ exam and we recorded their results. The next day, the same patients received drug XYZ, took again a IQ exam and we recorded their results.

Paired-samples t-test: Paired data

As the name implies, paired data come in pairs. That is, two measurements are made on the same individual (before and after, for example) or on a linked pair of individuals (father and son, for example)

Paired-samples t-test: Research question

Is there any improvement in patient IQ score once they took the XYZ drug?

Paired-samples t-test: hypotheses

$H_{0}: \mu_{2}=\mu_{1}$ (no change in their IQ)
$H_{a}: \mu_{2}>\mu_{1}$, (better IQ)

Paired-samples t-test: Data (IQ Scores)

$$
\begin{aligned}
& H_{0}: \mu_{2}=\mu_{1} \text { (no change in their IQ) } \\
& H_{a}: \mu_{2}>\mu_{1} \text {, (better IQ) }
\end{aligned}
$$

PatientsiD	IQ_Before	IQ_After	
1	101	113	
2	124	127	
3	89	89	
4	57	70	
5	135	127	
6	98	104	
7	69	69	
8	105	127	
9	114	115	
10	106	99	
11	97	104	
12	93	120	
13	116	95	
14	102	129	
15	71	106	
16	88	71	
17	108	94	
18	144	112	
19	99	154	
20	96		

Paired-samples t-test: Compute the differences

 between each pair$$
\begin{aligned}
& H_{0}: \mu_{2}=\mu_{1} \text { (no change in their IQ) } \\
& H_{a}: \mu_{2}>\mu_{1}, \text { (better IQ) }
\end{aligned}
$$

PatientsiD	IQ Before	IQ After	Differences
1	101	113	12
2	124	127	3
3	89	89	0
4	57	70	13
5	135	127	-8
6	98	104	6
7	69	69	0
8	105	127	22
9	114	115	1
10	106	99	-7
11	97	104	7
12	121	120	-1
13	93	95	2
14	116	129	13
15	102	106	4
16	71	71	0
17	88	94	6
18	108	112	4
19	144	154	10
20	99	96	-3

Paired-samples t-test: T statistics formula.

Mean differences!

PatientsiD	IQ Before	IQ After	Differences
1	101	113	12
2	124	127	3
3	89	89	0
4	57	70	13
5	135	127	-8
6	98	104	6
7	69	69	0
8	105	127	22
9	114	115	1
10	106	99	-7
11	97	104	7
12	121	120	-1
13	93	95	2
14	116	129	13
15	102	106	4
16	71	71	0
17	88	94	6
18	108	112	4
19	144	154	10
20	99	96	-3
cv	U	$1 \sim$	

Paired-samples t-test: Compute the mean (m) and

 (sd) of the column differences.```
Table of the mean and sdv of the differences|
Tummarise(IQStudy
 count = n()
 mean = mean(Differences, na.rm = TRUE),
 sd = sd(Differences, na.rm = TRUE)
```

)

| PatientsiD | IQ Before | 1QAfter | Differences |
| :---: | :---: | :---: | :---: |
| 1 | 101 | 113 | 12 |
| 2 | 124 | 127 | 3 |
| 3 | 89 | 89 | 0 |
| 4 | 57 | 70 | 13 |
| 5 | 135 | 127 | -8 |
| 6 | 98 | 104 | 6 |
| 7 | 69 | 69 | 0 |
| 8 | 105 | 127 | 22 |
| 9 | 114 | 115 | 1 |
| 10 | 106 | 99 | -7 |
| 11 | 97 | 104 | 7 |
| 12 | 121 | 120 | -1 |
| 13 | 93 | 95 | 2 |
| 14 | 116 | 129 | 13 |
| 15 | 102 | 106 | 4 |
| 16 | 71 | 71 | 0 |
| 17 | 88 | 94 | 6 |
| 18 | 108 | 112 | 4 |
| 19 | 144 | 154 | 10 |
| 20 | 99 | 96 | -3 |
| $1<0$ |  | $10$ | L |

## Paired-samples $t$-test: Compute the t statistic value

```
calculate the t
n = mean(IQStudy$Differences)-0 # numerator
d = sd(IQStudy$Differences)/sqrt(20) # denominator
t = n/d
t
Table of the mean and sdv of the differences
summarise(IQStudy,
 count = n(),
 mean = mean(Differences, na.rm = TRUE),
 sd = sd(Differences, na.rm = TRUE)
)
[1] 2.584921
\[
t=\frac{\overline{\mathrm{x}}-0}{\frac{s}{\sqrt{n}}} \quad t=\frac{4.2-0}{\frac{7.266361}{\sqrt{20}}}=2.585
\]
```


## Paired-samples $t$-test: Compute the t statistic value

```
calculate the t
n = mean(IQStudy$Differences)-0 # numerator
d = sd(IQStudy$Differences)/sqrt(20) # denominator
t = n/d
t
Table of the mean and sdv of the differences
summarise(IQStudy,
 count = n(),
 mean = mean(Differences, na.rm = TRUE),
 sd = sd(Differences, na.rm = TRUE)
)
```

[1] 2.584921

$$
t=\frac{\overline{\mathrm{x}}-0}{\frac{s}{\sqrt{n}}} \quad t=\frac{4.2-0}{\frac{7.266361}{\sqrt{20}}}=2.585
$$

| $t$ Table <br> cum. prob one-tail two-tails | $\begin{array}{r} t_{500} \\ 0.50 \\ 1.00 \\ \hline \end{array}$ | $\begin{aligned} & 0.25 \\ & 0.50 \\ & \hline \end{aligned}$ | $\begin{array}{r} t_{80} \\ 0.20 \\ 0.40 \\ \hline 0.40 \end{array}$ | $\begin{array}{r} t_{.95} \\ 0.15 \\ 0.30 \end{array}$ | $\begin{array}{r} \boldsymbol{t}_{90} \\ 0.10 \\ 0.20 \end{array}$ | $\begin{array}{r} t_{955}^{t_{05}} \\ 0.05 \\ 0.10 \end{array}$ | $\begin{array}{r} t_{975} \\ 0.025 \\ 0.05 \\ \hline \end{array}$ | $\begin{array}{r} t_{99}^{t_{99}^{01}} \\ 0.0 \\ \hline 0 . \end{array}$ | $\begin{array}{r} t_{995} \\ 0.005 \\ 0.01 \\ \hline \end{array}$ | $\begin{array}{r} t_{\text {t.999 }} \\ 0.001 \\ 0.002 \\ \hline \end{array}$ | $\begin{gathered} t_{\text {fg95 }} 0.005 \mid \\ 0.0001 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 |  | 63.66 |  |  |
|  | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | ${ }_{9} 9.925$ | 22.327 | 31.599 |
|  | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 | 12.924 |
|  | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.610 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 | 69 |
|  | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 |  |
| 7 | 0.000 | 0.711 | ${ }^{0.896}$ | 1.119 | ${ }^{1.415}$ | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408 |
|  | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 |
|  | 0.000 | 0.703 | ${ }^{0.883}$ | 1.100 | ${ }^{1.383}$ | 1.833 | ${ }^{2} 2222$ | 2821 | 3.250 | 4.297 | 4.781 |
| 10 | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 |
| 11 | 0.000 | 0.697 | ${ }^{0.876}$ | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 37 |
| ${ }^{12}$ | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 | 4.318 |
| 13 | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 | 4.221 |
| 14 | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.140 |
| 15 | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 | 4.073 |
| 16 | 0.000 | 0.690 | 0.865 | 1.071 | ${ }^{1.337}$ | 1.746 | ${ }_{2}^{2.120}$ | ${ }_{2}^{2.583}$ | 2.921 | 3.686 | 4.015 |
| 17 | 0.000 | 0.689 | 0.863 | 1.069 | ${ }^{1.333}$ | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 | 3.965 |
| 18 | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610 | 3.922 |
| 19 | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 |  |
| 20 | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.850 |
| 21 | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 | 3.819 |
| ${ }_{22}^{22}$ | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 |
| ${ }_{23}^{23}$ | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 |  |
| ${ }_{25}^{24}$ | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | ${ }^{3.745}$ |
|  | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 | 3.725 |
| ${ }_{2}^{26}$ | 0.000 | 0.684 | 0.856 | ${ }^{1.058}$ | ${ }^{1.315}$ | 1.706 | 2.056 | 2.479 | 2.779 | ${ }^{3.435}$ | ${ }^{3.707}$ |
| 27 | 0.000 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.690 |
| 28 | 0.000 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 3.674 |
| 29 | 0.000 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 659 |
| 30 | 0.000 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 |  |
| 40 | 0.000 | 0.681 | 0.85 |  | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 |  |
| 60 | 0.000 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 |
| 80 | 0.000 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 3.195 | 3.416 |
| 100 | 0.000 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 3.174 | 3.390 |
| 1000 | 0.000 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.330 | 2.581 | 3.098 | 3.300 |
| $z$ | 0.000 | 0.674 | 0.842 | 1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 | 3.291 |
|  | 0\% | 50\% | 60\% | 70\% | 80\% | 90\% | 95\% | 98\% | 99\% | 99.8\% | 99.9\% |
|  |  |  |  |  | Confidence Level |  |  |  |  |  |  |

## Paired-samples t-test: Compute the t statistic

 valueDegrees of freedom $=n$ (number of patients)-1 $=19$
Level of significance $=.05$ (Interval confidence 95\%)


## Paired-samples $t$-test: Compute the t statistic value

Degrees of freedom = n(number of patients)-1 = 19
Level of significance $=.05$ (Interval confidence 95\%) One-tailed paired t-test

$$
t=\frac{\overline{\mathrm{x}}-0}{\frac{s}{\sqrt{n}}} \quad t=\frac{4.2-0}{\frac{7.266361}{\sqrt{20}}}=2.585
$$

$H_{0}: \mu_{\mathrm{b}}=\mu_{\mathrm{a}}(\mathrm{m}=0)$, (no change in their IQ)
$H_{a}: \mu_{b}>\mu_{a}$ (better IQ)


## Paired-samples $t$-test: Compute the t statistic value

Degrees of freedom $=$ n(number of patients)-1 = 19
Level of significance $=.05$ (Interval confidence 95\%) One-tailed paired t-test

$$
t=\frac{\overline{\mathrm{x}}-0}{\frac{s}{\sqrt{n}}} \quad t=\frac{4.2-0}{\frac{7.266361}{\sqrt{20}}}=2.585
$$

| $t$ Table <br> cum. prob one-tail two-tails | $t .50$ 0.50 1.00 | $t .75$ 0.25 0.50 | $t$ t.80 0.20 0.40 | $t .85$ 0.15 0.30 | $t .90$ 0.10 0.20 | $\begin{array}{r} t .95 \\ 0.05 \\ 0.10 \end{array}$ | $t .975$ 0.025 0.05 | $t .99$ 0.01 0.02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df |  |  |  |  |  | $\bigcirc$ |  |  |
| 1 | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 |
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 |
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 |
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 |
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 |
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 |
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 |
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 |
| 10 | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 |
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 |
| 12 | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 |
| 13 | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 |
| 14 | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 |
| 15 | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 |
| 16 | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 |
| 17 | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 |
| 18 | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 |
| 19) | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 |

## Paired-samples t-test: Compute the t Statistic

| Step | Result |
| :--- | :--- |
| Null $\left(H_{0}\right)$ | No change in IQ |
| Alternative $\left(H_{a}\right)$ | Better IQ |
| Level significance (a) | 0.05 level |
| Critical values | $[1.7249]$ |
| Test statistic | 2.5849 |
| p-value | 0.00908 |
| Decision | Reject Ho |

```
Compute paired t test
t.test(IQStudy$IQ_After, # after sample
 IQStudy$IQ_Before, # before sample
 alternative = 'greater',
 paired = TRUE)
 Paired t-test
data: IQStudy\$IQ_After and IQStudy\$IQ_Before
\(\mathrm{t}=2.5849, \mathrm{df}=19, \mathrm{p}\)-value \(=0.00908\)
alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval:|
1.724718
Inf
sample estimates:
mean of the differences
4.2
\[
t=\frac{\overline{\mathrm{x}}-0}{\frac{s}{\sqrt{n}}} \quad t=\frac{4.2-0}{\frac{7.266361}{\sqrt{20}}}=2.585
\]
```



## Paired-samples t-test: Decision p-value approach

Since the $p$-value is less than alpha(a), we reject the $H_{0}$.
There is enough evidence to suggest that treatment (XYZ drug) has achieved better change (i.e. patients after treatment scores got higher than before the treatment).

## 4. ANOVA: one-way

## ANOVA: Analysis of the Variance

$$
V(X)=\frac{\sum(X-\bar{X})^{2}}{\mathrm{n}-1}
$$

## ANOVA: Analysis Of Sum of Squares

$$
S S T=\sum(X-\bar{X})^{2}
$$

## ANOVA: Analysis Of Sum of Squares

$$
S S T=\sum(X-\bar{X})^{2}
$$

Example:
Find the total SS for the following
two samples

| A: $\{2,2,3,5\}$ | mean_A |
| :--- | :--- |
| ANSWER: | $[1] 3$ |


| SSTA $=(-1)^{2}+(-1)^{2}+(0)^{2}+(2)^{2}=6$ |  |
| :--- | :--- |
| B: $\{4,10,13\}$ | mean_B |
| ANSWER: | $[1] 9$ |

SSTB $^{2}=(-5)^{2}+(1)^{2}+(4)^{2}=42$

## One-way ANOVA: Example 1

Scores from a stats test (9 students):
$\{1,3,4,5,5,5,6,7,9\}$

$$
\mathrm{STT}=42
$$

```
{1,5,9}
```


## Stream II

## Stream III

$\{4,5,6\}$ $\{3,5,7\}$

## One-way ANOVA: Example 1



## One-way ANOVA: Example 1

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Stream } \mid \\
\{1,5,9\}
\end{array} & \begin{array}{c}
\text { STT }=42 \\
\text { Stream II }
\end{array} & \begin{array}{c}
\text { Stream III } \\
\{4,5,6\}
\end{array} \\
\overline{\mathrm{x}_{\mathrm{I}}}=5 & \left.\overline{\mathrm{x}_{\mathrm{I}}}=5,7\right\}
\end{array} \quad \overline{\mathrm{x}_{\mathrm{I}}}=5 .
$$

## One-way ANOVA: Example 1

|  | STT $=42$ |  |
| :---: | :---: | :---: |
| Stream \| | Stream II | Stream III |
| $\{1,5,9\}$ | $\{3,5,7\}$ | $\{4,5,6\}$ |
|  |  |  |
| $\overline{\mathrm{X}_{\mathrm{I}}}=5$ | $\overline{\mathrm{XII}_{1}}=5$ | $\overline{\mathrm{XIIII}^{\prime}}=5$ |

```
SSW =
SSB =
\((-4)^{2}+0^{2}+4^{2}\)
32
\(3(0)^{2}\)
0
```



$$
\begin{aligned}
& =42 \\
& =0
\end{aligned}
$$

## One-way ANOVA: Example 2

|  | STT $=42$ |  |
| :---: | :---: | :---: |
| Stream \| | Stream II | Stream III |
| $\{1,3,5\}$ | $\{5,7,9\}$ | $\{4,5,6\}$ |



Stream

## One-way ANOVA: Example 2

|  | $\{1,3,5\}$ | $\text { STT = } 42$ $\{5,7,9\}$ | $\begin{gathered} \text { Stream III } \\ \{4,5,6\} \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\overline{x_{1}}=3$ | $\overline{X_{11}}=7$ | $\overline{\mathrm{xIII}^{\prime \prime}}=5$ |  |
| SSW = | $\begin{gathered} (-2)^{2}+0^{2}+2^{2} \\ 8 \end{gathered}$ | $\begin{aligned} & (-2)^{2}+0^{2}+2^{2} \\ & 8 \end{aligned}$ | $\frac{(-1)^{2}+0^{2}+1^{2}}{2}$ | $=18$ |
| SSB $=$ | $\begin{gathered} 3(3-5)^{2} \\ 12 \end{gathered}$ | $\begin{gathered} 3(7-5)^{2} \\ 12 \end{gathered}$ | $\begin{gathered} 3(5-5)^{2} \\ 0 \end{gathered}$ | $=24$ |

## One-way ANOVA: Example 2

## SST = SSW + SSB

$$
F=\frac{M S B}{M S W}=\frac{S S B /(c-1)}{S S W /(n-c)}
$$

## One-way ANOVA: Example 1 vs Example 2



## One-way ANOVA: Example 1 vs Example 2 vs Example 3



$$
F=0
$$


$F=4.0$

$F=46.2$

## One-way ANOVA: Example 1 vs Example 2 vs Example 3



$$
\begin{aligned}
& F=0 \\
& (p=1.000)
\end{aligned}
$$

Do not reject Ho (at 5\%)


$$
\begin{aligned}
& F=4.0 \\
& (p=0.07087)
\end{aligned}
$$

Do not reject Ho (at 5\%)

$F=46.2$
( $\mathrm{p}=0.0002$ )
Reject Ho (at 5\%)
$\mathrm{H}_{0}: \mu_{\mathrm{I}}=\mu_{\mathrm{II}}=\mu_{\mathrm{III}}$

## Compute one-way ANOVA in R <br> - $\{r$ \}

\# create vectors
streams <- c('I','II','III') \# streams categorical variable
streams <- c
scores <- $c(1,4,3,5,5,5,9,6,7) ~ \# ~ s c o r e s ~ n u m e r i c a l ~ v a r i a b l e ~$
\# create data frame as combination both vectors (= columns)
data.scores <- data frame(streams,
scores, stringsAsFactors = TRUE) \# convert to factor
\# check the data frame characteristics
str(data.scores) \# check structure of dataframe
levels(data.scores\$streams) \# check the levels of the variable streams
\# compute descriptive stats
library (dplyr) \# import the library dplyr
summarise(group_by (data.scores, streams,
count $=\mathrm{n}$ (),
ean = mean(scores, na.rm = TRUE), \# if NA
sd $=$ sd(scores, na. $r m=T R U E)$ )
\# box plot score by group
boxplot(scores~streams, data.scores,
col = c("green","blue", "red")
ylab = "Scores", xlab="stream"
las = 1
boxwex = 0.2)
\# compute one-way anova
score.aov <- aov(scores ~ streams, data.scores)
summary (score.aov) \# summarize the analysis of variance mode1.|


|  | Df Sum Sq Mean | Sq | $F$ value | $\operatorname{Pr}(>F)$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| streams | 2 | 0 | 0 | 0 | 1 |
| Residuals | 6 | 42 | 7 |  |  |

## 3. Chi Square test for Independence

## Chi Square test for Independence:

- The Chi-Square Test for Independence evaluates the relationship between two variables
- It is a nonparametric test that is performed on categorical(nominal) data.
- Null Hyothesis is No relationship or No Differences


## Example:

We conduct a survey with 500 Data Science graduate students (boys and girls) and we asked which is their favourite course: statistics, computer science, or Ethics \& Responsibility. We would like to know if there is any relationship between gender and favourite course. We use a significant level of $5 \%$.

Source: https://www.youtube.com/watch?v=LE3AlyY cn8

## Data Collected: Contingency Table

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $N=500$ |

## Chi-square test for independence (Steps):

1. Define Null and Alternative Hypotheses
2. Looking for critical value:
a) State Alpha
b) Calculate degrees of freedom
c) Look at chi square table
3. State Decision Rule
4. Calculate chi square statistic
5. State Results and Conclusion

## Step 1: Define Null and Alternative hypotheses:

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $N=500$ |

Ho: Gender and favourite course are not related (no relationship)
Ha: Gender and favorite course are related

## Step 2: a) State alpha: 0.05

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $N=500$ |

How confident should you be in your test result?
Level of significance, commonly accepted 5\%, then alpha $=0.05$

## Step 2: b) Calculate the Degrees of Freedom

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $N=500$ |

$$
\begin{gathered}
d f=(\text { rows }-1)(\text { columns }-1) \\
d f=(2-1)(3-1) \\
d f=(1)(2)=2
\end{gathered}
$$

## Step 2: c) Look at chi-square table

## Chi-square Distribution Table



## Step 3: State Decision Rule

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $\mathrm{~N}=500$ |

## Critical value approach:

If $\chi^{2}$ is greater than 5.99 then, reject $\mathrm{H}_{0}$

## Step 3: State Decision Rule

## P-value value approach?

## Step 3: State Decision Rule

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $N=500$ |

## p-value value approach:

If $p$-value is smaller than level of significance, then reject $\mathrm{H}_{0}$
i.e. the relationship is significant (we are unlikely to have got that by chance)

## Step 5: Calculate Chi square statistic

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $\mathrm{~N}=500$ |

$$
\chi^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}
$$

where
$f_{o}=$ Observed frequencies
$f_{e}=$ Expected frequencies

## Step 5: Calculate Chi square statistic

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $\mathrm{~N}=500$ |

$$
\chi^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}
$$

where
$f_{o}=$ Observed frequencies
$f_{e}=$ Expected frequencies

## Step 5: Calculate Chi square statistic

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $\mathrm{~N}=500$ |

$$
\chi^{2}=\sum \frac{\left(f_{0}-f_{e}\right)^{2}}{f_{e}}
$$

$$
f_{e}=\frac{\left(f_{c} f_{r}\right)}{n}
$$

where
$f_{o}=$ Observed frequencies
$f_{e}=$ Expected frequencies

## Step 5: Calculate Chi square statistic

|  | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL | | |
|---|---|---|---|---|---|---|
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | $\mathrm{~N}=500$ |  | | $\chi^{2}=\Sigma \frac{\left(f_{0}-f_{e}\right)^{2}}{\left.f_{e}\right)}$ |
| :---: |
| where |
| $f_{o}=$ observed frequencies |
| $f_{e}=$ Expected frequencies |

## Step 5: Calculate Chi square statistic (fe)

| Observed table | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $\mathrm{n}=500$ |


| Expected table | Statistics |  |  | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys $\quad f_{e}=\frac{\left(\sigma_{f(t)}^{n}\right.}{n}$ | $(120 * 270) / 500=$ <br> 64.8 |  |  | $\mathbf{2 7 0}$ |
|  |  |  |  |  |
| TOTAL | 120 | 180 | 200 | $\mathrm{n}=500$ |

## Step 5: Calculate Chi square statistic (fe and fo)

| Observed table <br> (fo) | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 100 | 150 | 20 | 270 |
| Girls | 20 | 30 | 180 | 230 |
| TOTAL | 120 | 180 | 200 | $\mathrm{n}=500$ |
| Expected table <br> (fe) | Statistics | Computer <br> Science | Ethics and <br> Responsibility | T0TAL |
| Boys | 64.8 | 97.2 | 108 | 270 |
| Girls | 55.2 | 82.8 | 92 | 230 |
| TOTAL | 120 | 180 | 200 | $\mathrm{n}=500$ |

## Step 5: Calculate Chi square statistic (fe and fo)

| Observed <br> (Expected) | Statistics | Computer <br> Science | Ethics and <br> Responsibility | TOTAL |
| :--- | :--- | :--- | :--- | :--- |
| Boys | $100(64.8)$ | $150(97.2)$ | $20(108)$ | $\mathbf{2 7 0}$ |
| Girls | $20(55.2)$ | $30(82.8)$ | 180 | $\mathbf{2 3 0}$ |
| TOTAL | $\mathbf{1 2 0}$ | $\mathbf{1 8 0}$ | $\mathbf{2 0 0}$ | $\mathbf{n}=\mathbf{5 0 0}$ |

$$
\chi^{2}=\frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=\frac{(100-64.8)^{2}}{64.8}+\frac{(20-55.2)^{2}}{55.2}+\frac{(150-97.2)^{2}}{97.2}+\cdots+\frac{(180-92)^{2}}{92}
$$

$$
\chi^{2}=259.8
$$

## Step 5: State the results

| Step | Result |
| :--- | :--- |
| Null $\left(H_{0}\right)$ | Gender and favourite color <br> are not related |
| Alternative $\left(H_{a}\right)$ | Gender and favourite color <br> are related |
| Level significance (a) | 0.05 level |
| Degrees of freedom (df) | 2 |
| Chi-square | 259.8 |
| p-value | .00000000000000022 |
| Decision | Reject Ho |

\# Create contingency tablel
ResponsableDs <- as.table (rbind $(c(100,150,20), \quad c(20,30,180))$ )
dimnames (Responsableops) $<-1$ ist $($ gender

\# use chisq() function
(Xsq <- chisq.test(ResponsableDs)) \# Prints test summary Xsq\$observed
xsq\$expected

| gender |  | course |  |
| :---: | :---: | :---: | :---: |
| $\underset{\text { geys }}{\text { gender }}$ | Statistics | computer science $\begin{array}{r}150 \\ 10\end{array}$ | Ethics \& Responsability 20 |
| girls | 20 | 30 | 180 |
|  |  |  |  |
| Boys |  | $97.2$ | 108 |
| Girls | 7s 55.2 | 82.8 | $\begin{aligned} & 100 \\ & 92 \end{aligned}$ |

Pearson's Chi-squared test
data: ResponsableDS
$x$-squared $=259.8, d f=2, p$-value $<2.2 e-16$

## Step 6: State the results

"A chi-square test of independence was performed to examine the relation between gender and the favorite course within Data Science Graduate Program. As the p-value is smaller than the . 05 significance level, we do reject the null hypothesis that the gender and favorite course are not related and therefore, we can conclude that there is a statistically significant relationship between them".

