Intro to Inferential Statistics with R

Workshop 4

Course: VSK1004 Applied Researcher

Workshop structure

Intro to Statistic Inference	More about inferential Statistics	Linear and Logistic regression		
 Descriptive vs Inferential statistics Population, sample and sampling distribution Null Hypothesis testing Correlation and interpretation 	 Choosing a statistical test Paired t-test Anova Chi-squared distribution 	 Model assumptions Interpretations 		

Our goal in the next 40 min

In this session, we will cover some other statistical procedures for hypothesis testing (quantitative research):

- 1. Choosing a statistical test
- 2. Paired t-test
- 3. Chi-square test for independence
- 4. ANOVA

1. Choosing a Statistical test for your research

Many possibilities

- Estimate Population Proportion
- Estimate Population Mean
- One sample Proportion
- Two sample Proportions
- One sample t (Mean)
- Unpaired sample t
- Paired sample t
- Correlation test

- One-Way ANOVA
- Two-Way ANOVA
- Chi-Square Test
- One Sample Variance
- Two Sample Variance
- Wilcoxon rank-sum test

Most common test for quantitative research

- Estimate Population Proportion
- Estimate Population Mean
- One sample Proportion
- Two sample Proportions
- One sample t (Mean)
- Unpaired sample t
- Paired sample t
- Correlation test

- One-Way ANOVA
- Two-Way ANOVA
- Chi-Square Test
- One Sample Variance
- Two Sample Variance
- Wilcoxon ranksum test

Monday

- Estimate Population Proportion
- Estimate Population Mean
- One sample Proportion
- Two sample Proportions
- One sample t (Mean)
- Unpaired sample t
- Paired sample t
- Correlation test

- One-Way ANOVA
- Two-Way ANOVA
- Chi-Square Test
- One Sample Variance
- Two Sample Variance
- Wilcoxon ranksum test

Today

- Estimate Population Proportion
- Estimate Population Mean
- One sample Proportion
- Two sample Proportions
- One sample t (Mean)
- Unpaired sample t
- Paired sample t
- Correlation test

- One-Way ANOVA
- Two-Way ANOVA
- Chi-Square Test
- One Sample Variance
- Two Sample Variance
- Wilcoxon ranksum test

What is your purpose for research question?

- Comparison:
 - Is there a differences between groups?
 - e.g. females vs. males
 - e.g. control group vs. treatment groups
 - e.g. grouping individuals by color preferences (yellow, blue)
- In this different examples, we have, at least, two groups and we attempt to find the differences

- Relationship:
 - Is there a connection?
 - e.g. what is the equation relating height & flexibility
 - e.g. can age predict muscle mass?
 - e.g. is medication dosage linked to recovery time
- In this different examples, we are seeking out correlation or causation from one variable to the other

What is your purpose for research question?

- Comparison:
 - Is there a differences between groups?
 - e.g. females vs. males
 - e.g. control group vs. treatment groups
 - e.g. grouping individuals by color preferences (yellow, blue)
- In this different examples, we have, at least, two groups and we attempt to find the differences

- Relationship:
 - \circ $\;$ Is there a connection?
 - e.g. what is the equation relating height & flexibility
 - e.g. can age predict muscle mass?
 - e.g. is medication dosage linked to recovery time
- In this different examples, we are seeking out correlation or relationship from one variable to the other

Type of Data you are looking at:

- Categorical:
 - Qualitative characteristics:
 - Mortality Rate (death/survival)
 - Patient Falls Rate (fall/not fall)
 - Which gene was expressed?

- Continuous
 - Quantitative or numerical:
 - Heart Rate
 - Age
 - Blood pressure

. Chi-squared

. t-test

correlation

- Comparison:
 - Any difference?

• Relationship:

• Any connection?

- Categorical:
 - \circ No quantitative meaning

- Continuous:
 - Quantitative meaning

- Comparison:
 - Any difference?

• Relationship:

• Any connection?

Chi-Squared Family

- Categorical:
 - No quantitative meaning

- Continuous:
 - \circ Quantitative meaning

- Comparison:
 - Any difference?

• Relationship:

• Any connection?

t- Test Family

- Categorical:
 - \circ No quantitative meaning

- Continuous:
 - Quantitative meaning

- Comparison:
 - Any difference?

Relationship:
 Any connection?

Correlation Family

- Categorical:
 - \circ No quantitative meaning

- Continuous:
 - Quantitative meaning

- Chi-squared:
 - Comparison
 - Categorical <u>only</u>

- t-Test:
 - comparison
 - categorical <u>and</u> continuous

- Correlation
 - Relationship
 - continuous <u>only</u>

- Chi-squared:
 - Any number of levels/groups:
 - Chi-squared test of homogeneity
 - Chi-squared test of independence

- t-Test:
 - 1 level/group:
 - one-sample ttest
 - 2 levels/groups:
 - two-sample unpaired t-test
 - two-sample paired t-test
 - 3+ levels/groups:
 - one-way ANOVA

- Correlation:
 - 1 independent and 1 dependent variable:
 - Pearson's correlation
 - Regression

- Chi-squared:
 - Any number of levels/groups:
 - Chi-squared test of homogeneity
 - Chi-squared test of independence

- t-Test:
 - 1 level/group:
 - one-sample ttest
 - 2 levels/groups:
 - two-sample unpaired t-test
 - two-sample paired t-test
 - 3+ levels/groups:
 - one-way ANOVA

- Correlation:
 - 1 independent and 1 dependent variable:
 - Pearson's correlation
 - Regression

2. Paired (Dependent) sample t-test

Paired-samples t-test: Example

A study was designed to see if XYZ drug was effective at improving their IQ. 20 patients took IQ exam and we recorded their results. The next day, the same patients received drug XYZ, took again a IQ exam and we recorded their results.

Paired-samples t-test: Paired data

As the name implies, paired data come in pairs. That is, two measurements are made on the same individual (before and after, for example) or on a linked pair of individuals (father and son, for example)

Paired-samples t-test: Research question

Is there any improvement in patient IQ score once they took the XYZ drug?

Paired-samples t-test: hypotheses

*H*_o: $\mu_2 = \mu_1$ (no change in their IQ) *H*_a: $\mu_2 > \mu_1$, (better IQ)

Paired-samples t-test: Data (IQ Scores)

 $H_o: \mu_2 = \mu_1$ (no change in their IQ)

 H_a : $\mu_2 > \mu_1$, (better IQ)

PatientsiD 🗘	IQ_Before	IQ_After
1	101	113
2	124	127
3	89	89
4	57	70
5	135	127
6	98	104
7	69	69
8	105	127
9	114	115
10	106	99
11	97	104
12	121	120
13	93	95
14	116	129
15	102	106
16	71	71
17	88	94
18	108	112
19	144	154
20	99	96

Paired-samples *t*-test: Compute the differences between each pair

 $H_o: \mu_2 = \mu_1$ (no change in their IQ)

 H_a : $\mu_2 > \mu_1$, (better IQ)

PatientsiD 🍦	IQ_Before	IQ_After 🗘	Differences
1	101	113	12
2	124	127	3
3	89	89	0
4	57	70	13
5	135	127	-8
6	98	104	6
7	69	69	0
8	105	127	22
9	114	115	1
10	106	99	-7
11	97	104	7
12	121	120	-1
13	93	95	2
14	116	129	13
15	102	106	4
16	71	71	0
17	88	94	6
18	108	112	4
19	144	154	10
20	99	96	-3

Paired-samples t-test: T statistics formula.

Mean differences!

PatientsiD 🗘	IQ_Before	IQ_After	Differences
1	101	113	12
2	124	127	3
3	89	89	0
4	57	70	13
5	135	127	-8
6	98	104	6
7	69	69	0
8	105	127	22
9	114	115	1
10	106	99	-7
11	97	104	7
12	121	120	-1
13	93	95	2
14	116	129	13
15	102	106	4
16	71	71	0
17	88	94	6
18	108	112	4
19	144	154	10
20	99	96	-3
20		50	

Paired-samples *t*-test: Compute the mean (*m*) and (sd) of the column differences. PatientsiD IQ Before IQ After Differences

		2	124	127
<pre># Table of the mean and sdv of the differences summarise(IQStudy,</pre>		3	89	89
<pre>count = n(), mean = mean(Differences, na.rm = TRUE),</pre>		4	57	70
sd = sd(Differences, na.rm = TRUE)		5	135	127
) 		6	98	104
		7	69	69
count mean <int></int>	sd <dbl></dbl>	8	105	127
20 4.2	7.266361	9	114	115
		10	106	99
		11	97	104
		12	121	120
\frown		13	93	95
$(\overline{\mathbf{x}} \rightarrow 0)$		14	116	129
t = -		15	102	106
$c = \frac{s}{s}$		16	71	71
\sqrt{n}		17	88	94
•••		18	108	112
		19	144	154

[1] 2.584921

$$t = \frac{\bar{x} - 0}{\frac{s}{\sqrt{n}}} \quad t = \frac{4.2 - 0}{\frac{7.266361}{\sqrt{20}}} = 2.585$$

calculate the t

. . .

[1] 2.584921

$$t = \frac{\bar{\mathbf{x}} - 0}{\frac{s}{\sqrt{n}}} \quad t = \frac{4.2 - 0}{\frac{7.266361}{\sqrt{20}}} = 2.585$$

cum. prob	t.50	t .75	t.80	t.85	t.90	t.95	t .975	t .99	t.995	t.999	t.9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6 7	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959 5.408
(0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	
8	0.000	0.706	0.889 0.883	1.108	1.397	1.860	2.306	2.896	3.355	4.501 4.297	5.041
9 10	0.000 0.000	0.703	0.883	1.100 1.093	1.383 1.372	1.833 1.812	2.262 2.228	2.821 2.764	3.250 3.169	4.297	4.781 4.587
11	0.000	0.697	0.879	1.093	1.372	1.796	2.220	2.764	3.109	4.144	4.567
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
13	0.000	0.695	0.873	1.083	1.350	1.771	2.179	2.650	3.055	3.852	4.310
13	0.000	0.694	0.868	1.079	1.345	1.761	2.160	2.650	2.977	3.787	4.221
15	0.000	0.692	0.866	1.078	1.345	1.753	2.145	2.6024	2.947	3.733	4.140
16	0.000	0.690	0.865	1.074	1.341	1.735	2.131	2.583	2.947	3.686	4.073
17	0.000	0.689	0.863	1.069	1.333	1.740	2.120	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1,708	2.060	2.485	2.787	3,450	3.725
26	0.000	0.684	0.856	1.058	1.315	1,706	2.056	2.479	2.779	3.435	3,707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%

Degrees of freedom = n(number of patients)-1 = 19 Level of significance = .05 (Interval confidence 95%)

$$t = \frac{\bar{x} - 0}{\frac{s}{\sqrt{n}}} \quad t = \frac{4.2 - 0}{\frac{7.266361}{\sqrt{20}}} = 2.585$$

cum. prob	t.50	t.75	t.80	t.85	t .90	t .95	t .975	t .99	t .995	t.999	t.9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476 1.440	2.015	2.571	3.365	4.032 3.707	5.893 5.208	6.869 5.959
7	0.000	0.718 0.711	0.906	1.134 1.119	1.440	1.943 1.895	2.447 2.365	3.143 2.998	3.499	5.208 4.785	5.958
8	0.000	0.711	0.896	1.119	1.415	1.895	2.305	2.998	3.499	4.785	5.408
o 9	0.000	0.708	0.883	1.100	1.397	1.833	2.306	2.890	3.355	4.501	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.202	2.764	3.169	4.257	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.105	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27 28	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000 0.000	0.683 0.683	0.855 0.854	1.056 1.055	1.313 1.311	1.701 1.699	2.048 2.045	2.467 2.462	2.763 2.756	3.408 3.396	3.674
29 30	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659 3.646
40	0.000	0.681	0.854	1.055	1.303	1.684	2.042	2.457	2.750	3.365	3.551
60	0.000	0.679	0.848	1.030	1.296	1.671	2.021	2.423	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.043	1.292	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
-	0.000	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
H	070	0070	0070	1070		dence Le		3070	3370	33.070	33.370

Degrees of freedom = n(number of patients)-1 = 19 Level of significance = .05 (Interval confidence 95%) One-tailed paired t-test

$$t = \frac{\bar{x} - 0}{\frac{s}{\sqrt{n}}} \quad t = \frac{4.2 - 0}{\frac{7.266361}{\sqrt{20}}} = 2.585$$

 $H_o: \mu_b = \mu_a$ (m = 0), (no change in their IQ)

 H_a : $\mu_b > \mu_a$ (better IQ)

Degrees of freedom = n(number of patients)-1 = 19 Level of significance = .05 (Interval confidence 95%) One-tailed paired t-test

$$t = \frac{\overline{x} - 0}{\frac{S}{\sqrt{n}}} \qquad t = \frac{4.2 - 0}{\frac{7.266361}{\sqrt{20}}} = 2.585$$

cum. prob	t.50	t.75	t.80	t .85	t _{.90}	(t _{.95})	t _{.975}	t .99
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02
df						\bigcirc		
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552
(19)	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539

Step	Result	<pre># Compute t.test(IQS IQS</pre>
Null (H_o)	No change in IQ	alt pai
Alternative (H_a)	Better IQ	Pai data: IQSt t = 2.5849,
Level significance (α)	0.05 level	alternative 95 percent 1.724718
Critical values	[1.7249]	sample estin mean of the
Test statistic	2.5849	$t = \frac{\overline{x} - \overline{x}}{\frac{s}{\sqrt{7}}}$
p-value	0.00908	
Decision	Reject Ho	

Compute paired t test
t.test(IQStudy\$IQ_After, # after sample
 IQStudy\$IQ_Before, # before sample
 alternative = 'greater',
 paired = TRUE)

Paired t-test

$$t = \frac{\bar{x} - 0}{\frac{s}{\sqrt{n}}} \qquad t = \frac{4.2 - 0}{\frac{7.266361}{\sqrt{20}}} = 2.585$$

Paired-samples t-test: Decision p-value approach

Since the p-value is less than alpha(a), we reject the H_0 .

There is enough evidence to suggest that treatment (XYZ drug) has achieved better change (i.e. patients after treatment scores got higher than before the treatment).

4. ANOVA: one-way

ANOVA: Analysis of the Variance

$$V(X) = \frac{\sum (X - \overline{X})^2}{n - 1}$$

ANOVA: Analysis Of Sum of Squares

$$SST = \sum (X - \overline{X})^2$$

ANOVA: Analysis Of Sum of Squares

$$SST = \sum (X - \overline{X})^2$$

Example: Find the total SS for the following two samples					
A: {2,2,3,5} ANSWER:	> mean_A [1] 3				
$SST_A = (-1)^2 + (-1)^2 + (0)^2 + (2)^2 = 6$					
B:{4,10,13} > mean_B [1] 9 ANSWER:					
$SST_{\rm B} = (-5)^2 + (1)^2 + (4)^2 = 42$					

Scores from a stats test (9 students): {1,3,4,5,5,5,6,7,9}

STT = 42

Stream I {1,5,9} Stream II {4,5,6} Stream III {3,5,7}

Stream

	STT = 42	
Stream I	Stream II	Stream III
{1,5,9}	{4,5,6}	{3,5,7}

 $\overline{x_1} = 5$ $\overline{x_{11}} = 5$ $\overline{x_{11}} = 5$

SSW = Sum of squares within groups = $\sum (X - \overline{X}_i)^2$ SSB = Sum of squares between groups = $\sum (\overline{X}_i - \overline{\overline{X}})^2$

	Stream I {1,5,9}	STT = 42 Stream II Stream III {3,5,7} {4,5,6}	
	$x_{1} = 5$	$\overline{x_{II}} = 5$ $\overline{x_{III}} = 5$	
SSW =	$(-4)^2 + 0^2 + 4^2$ 32	$(-2)^2+0^2+2^2$ $(-1)^2+0^2+1^2$ 8 2	= 42
SSB =	3(0) ² 0	$\begin{array}{ccc} 3(0)^2 & 3(0)^2 \\ 0 & 0 \end{array}$	= 0

	Stream I {1,3,5}	STT = 42 Stream II Stream III {5,7,9} {4,5,6}	
	$\overline{x_1} = 3$	$\overline{x_{II}} = 7$ $\overline{x_{III}} = 5$	
SSW =	$(-2)^2+0^2+2^2$ 8	$(-2)^2+0^2+2^2$ $(-1)^2+0^2+1^2$ 8 2	= 18
SSB =	3(3-5) ² 12	$\begin{array}{ccc} 3(7-5)^2 & 3(5-5)^2 \\ 12 & 0 \end{array}$	= 24

SST = SSW + SSB

$$F = \frac{MSB}{MSW} = \frac{\frac{SSB}{(c-1)}}{\frac{SSW}{(n-c)}}$$

One-way ANOVA: Example 1 vs Example 2

$$SSW = 42$$

$$SSB = 0$$

$$F = \frac{MSB}{MSW} = \frac{SSB}{(c-1)}$$

$$SSW = 18$$

$$SSB = 24$$

$$F = 4.0$$

10th June 2020

Intro to Inferential statistics with R

c.utrillaguerrero@maastrichtuniversity.nl

One-way ANOVA: Example 1 vs Example 2 vs Example 3

c.utrillaguerrero@maastrichtuniversity.nl

One-way ANOVA: Example 1 vs Example 2 vs Example 3

$H_0: \mu_I = \mu_{II} = \mu_{III}$

Compute one-way ANOVA in R

<pre>{r} # create vectors</pre>	\$\$\$ \$\black\$	streams 🔷	scores 🗧 🗘	streams <lctr></lctr>	count mean	
streams <- c('I','II','III') # streams categorical variable scores <- c(1,4,3,5,5,5,9,6,7) # scores numerical variable		1	1	II III 3 rows	9 5 9 5	2.291288 2.291288
# create data frame as combination both vectors (= columns) data.scores <- data.frame(streams.		1	5	5 10113		
scores, stringsAsFactors = TRUE) # convert to factor		1	9			
# check the data frame characteristics		П	4	8 -		
str(data.scores) # check structure of dataframe levels(data.scores\$streams) # check the levels of the variable streams		П	5	e -	<u> </u>	
# compute descriptive stats		Ш	6	4 -		
library(dplyr)		Ш	3	2 -		÷
<pre>count = n(), mean = mean(scores, na.rm = TRUE), # if NA</pre>		Ш	5		<u></u>	
<pre>sd = sd(scores, na.rm = TRUE))) # box plot score by group</pre>		Ш	7		I I Stream	
<pre>boxplot(scores~streams, data.scores,</pre>						
# compute one-way anova score.aov <- aov(scores ~ streams, data.scores) summary(score.aov) # summarize the analysis of variance model.		streams Residuals	Df Si 2 6	0	an SqF value 000	e Pr(>F)) 1
	a ∻ ×	Residuals	6	42	/	

Ē

3. Chi Square test for Independence

Chi Square test for Independence:

- The Chi-Square Test for Independence evaluates the relationship between two variables
- It is a nonparametric test that is performed on categorical(nominal) data.
- Null Hyothesis is No relationship or No Differences

Example:

We conduct a survey with 500 Data Science graduate students (boys and girls) and we asked which is their favourite course: statistics, computer science, or Ethics & Responsibility. We would like to know if there is any relationship between gender and favourite course. We use a significant level of 5%.

Source: https://www.youtube.com/watch?v=LE3AlyY_cn8

Data Collected: Contingency Table

	Statistics	ComputerEthics andScienceResponsibility		TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

Chi-square test for independence (Steps):

- 1. Define Null and Alternative Hypotheses
- 2. Looking for critical value:
 - a) State Alpha
 - b) Calculate degrees of freedom
 - c) Look at chi square table
- 3. State Decision Rule
- 4. Calculate chi square statistic
- 5. State Results and Conclusion

Step 1: Define Null and Alternative hypotheses:

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

Ho: Gender and favourite course are not related (<u>no</u> relationship)

Ha: Gender and favorite course are related

Step 2: a) State alpha: 0.05

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

How confident should you be in your test result?

Level of significance, commonly accepted 5%, then alpha = 0.05

Step 2: b) Calculate the Degrees of Freedom

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

$$df = (rows - 1)(columns - 1)$$
$$df = (2 - 1)(3 - 1)$$
$$df = (1)(2) = 2$$

Step 2: c) Look at chi-square table

Chi-square Distribution Table

d.f.	.995	.99	.975	.95	.9	.1	(.05)	.025	.01
1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
(2)	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16 81
I			$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	7.01 0.25 9.59 7.63 8.91 10.12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.07 31.33 30.14 32.85	34.81 36.19		11
			20 7.43	8.26 9.59 10.85		31.41 34.17	37.57		
			22 8.64	9.54 10.98 12.34		33.92 36.78	40.29		
			$\begin{array}{c c} 24 & 9.89 \\ 26 & 11.16 \end{array}$	10.86 12.40 13.85 12.20 13.84 15.28		36.42 39.36	42.98		
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$45.64 \\ 48.28$		
				14.95 16.79 18.49		43.77 46.98	50.89		
			32 15.13	16.36 18.29 20.07		46.19 49.48	53.49		

Step 3: State Decision Rule

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

Critical value approach:

If χ^2 is greater than 5.99 then, reject H₀

Step 3: State Decision Rule

P-value value approach?

Step 3: State Decision Rule

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

p-value value approach:

If p-value is smaller than level of significance, then reject H_0

i.e. the relationship is significant (we are unlikely to have got that by chance) Intro to Inferential statistics with R

10th June 2020

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

$$\chi^2 = \Sigma \frac{(f_0 - f_e)^2}{f_e}$$

where

 $f_o = Observed frequencies$

 $f_e = Expected frequencies$

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

$$\chi^2 = \sum \frac{(f_0 - f_e)^2}{f_e}$$

where

 $f_o = Observed frequencies$

 $f_e = Expected frequencies$

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

$$\chi^2 = \sum \frac{(f_0 - f_e)^2}{f_e}$$

where

 $f_o = Observed frequencies$

 $f_e = Expected frequencies$

 $f_e = \frac{(f_c f_r)}{n}$

	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	N = 500

Observed table	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	n = 500

Expected table	Statistics			TOTAL
Boys $f_e = \frac{(f_c f_r)}{n}$	(120*270)/500 = 64.8			270
TOTAL	120	180	200	n = 500

Step 5: Calculate Chi square statistic (fe and fo)

Observed table (fo)	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100	150	20	270
Girls	20	30	180	230
TOTAL	120	180	200	n = 500

Expected table (fe)	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	64.8	97.2	108	270
Girls	55.2	82.8	92	230
TOTAL	120	180	200	n = 500

Step 5: Calculate Chi square statistic (fe and fo)

Observed (Expected)	Statistics	Computer Science	Ethics and Responsibility	TOTAL
Boys	100 (64.8)	150 (97.2)	20(108)	270
Girls	20 (55.2)	30 (82.8)	180 (92)	230
TOTAL	120	180	200	n = 500

$$\chi^{2} = \frac{(f_{0} - f_{e})^{2}}{f_{e}} = \frac{(100 - 64.8)^{2}}{64.8} + \frac{(20 - 55.2)^{2}}{55.2} + \frac{(150 - 97.2)^{2}}{97.2} + \dots + \frac{(180 - 92)^{2}}{92}$$
$$\chi^{2} = 259.8$$

Step 5: State the results

Step	Result
Null (H_o)	Gender and favourite color are not related
Alternative (H_a)	Gender and favourite color are related
Level significance (α)	0.05 level
Degrees of freedom (df)	2
Chi-square	259.8
p-value	.000000000000022
Decision	Reject Ho

Respo	mes(ResponsableD	table(rbind(c(S) <- list(gen	100, 150, 20), c(20, 30, der = c("Boys", "Girls") istics", "Computer Scien		ity")
×	use chisq(Xsq <- chis sq\$observed sq\$expected	q.test(Res		rints test summary	/
	cours gender Stat		er Science Ethics & R	esponsability	
	Boys Girls	100 20	150 30	20 180	
	cou		uter Science Ethics & R		
	Boys Girls	64.8 55.2	97.2 82.8	108 92	
	P	earson's C	hi-squared test		
		sponsableD = 259.8,	s df = 2, p-value <	2.2e-16	

Step 6: State the results

"A chi-square test of independence was performed to examine the relation between gender and the favorite course within Data Science Graduate Program. As the p-value is <u>smaller</u> than the .05 significance level, we do reject the null hypothesis that the gender and favorite course are not related and therefore, we can <u>conclude</u> that there <u>is a statistically significant relationship between</u> them."